

Development of an Agency-wide GPS Technology Management Plan

SCAUG - 2012

Jeff Barnett
Inner Corridor Technologies, Inc.
Houston, Texas

Introduction

- Issues surrounding GPS technology management
- A sample study
- Study results
- The management plan based upon the study
- Lessons Learned

- GPS technology has been increasingly used by many organizations without uniform standards or management plan.
- It is commonly unknown within an agency who is using GPS, and for what purposes.
 - Many different kinds of GPS units in the field
 - Many different procedures for using the equipment
 - Many different uses and data
 - Many different (or non-existent) standards
- Can't support, can't train, can't manage

- Louisiana Department of Transportation and Development (LADOTD) & Louisiana Transportation Research Center (LTRC)
 - 2011 Study to develop a GPS technology management plan
 - Compare to evolution and adoption of computers.
- The current state of GPS adoption needed to be assessed and compared with current best practices as defined by:
 - internal users,
 - other large agencies,
 - the overall GPS industry
 - Used literature review, surveys, & interviews.

Literature review

- Searching for publications about GPS management plans
 - Many studies and papers about GPS technology
 - Some published practices and standards
 - Nothing related to GPS management

- Everybody using a GPS takes surveys on how GPS used
 - Exception of surveyors and PDA users
- Evaluate use compared with "Best Practices"
- Create plan for LADOTD GPS
 - Procurement
 - Management
 - Training
 - Support

- Four parts to the internal survey
 - Users
 - Training, frequency, devices, proficiency, comfort level
 - User Groups
 - Devices, standards, procedures, management, support
 - Devices
 - Make & model, OS, settings, capabilities, satisfaction
 - Fit for use, maintenance, management
 - Data
 - What & why, specific application, correction methods
 - Loading process, standards, formats

- From internal survey hoping to find:
 - Scope of GPS use in LADOTD
 - Inventory of known GPS equipment
 - Census of current GPS users
 - Conceptual map of data flow from field to database
 - Understanding of GPS needs including level of use
 - Internal practices to determine "best" practices

- From external surveys and GPS industry meetings, seeking:
 - Management practices
 - Support systems for users
 - Training and certification
 - Satisfaction with current GPS operations
 - Known GPS management plans
- Many organizations doing many of these things but not set into a comprehensive GPS technology management plan.

- LADOTD Mapping grade GPS uses
 - Road Inventory
 - Facilities and landscape maintenance
 - Environmental and archeological sites
 - Levee inspection

- LADOTD Recreational grade GPS uses
 - Outdoor advertising permits
 - Water well permits
 - Driveways permits
 - ROW borings
 - Borrow pits
 - Railroad crossings
 - Bridge Inspection
 - Utility location
 - Accident reports

- LADOTD Mapping grade users
 - Varying undocumented procedures, standards
 - Maintenance by breakdown
 - Good but aging equipment
 - No internal support system
- Need better support, training and standards

- LADOTD Recreational grade users
 - No user standards or procedures
 - Response to need in paper forms
 - Maintenance by trashcan
- Needs
 - Proper equipment
 - Training
 - Procedures
 - Support

- Current best practices as defined by:
 - Internal users (practices and standards from surveys)
 - Other large agencies (Outside LADOTD surveys)
 - The overall GPS industry (interviews with industry reps)
- Found that GPS technology management practice varied by size.
 - Large agencies, committees, managers, published standards
 - Small agencies, "the way we do it" (less formal less need)

Best Practices

- Industry representatives highly in favor of better management practices.
 - Better client relations
 - Hosted management sites
 - Higher overall user satisfaction with GPS
 - Less "issues" they have to deal with

The Plan for LADOTD

- Oversight
 - GPS Committee
 - GPS Coordinator
- Equipment
 - Standard GPS devices, at least 1 per district office (9)
 - Easier to train, support, and share
- Operational GPS practices and standards
 - Establish by GPS committee
 - Guidelines for all uses, data and training

- Technology Happens
 - GIS
 - Internet
 - LIDAR
 - Cloud computing
- Experiments become practices GPS has become a practice
 - Control and manage (best practices) that change
 - "change is inevitable, surprise is optional"
 - Someone has to be responsible for that new toy

Lessons Learned

- There is value in establishing and documenting a GPS technology management plan.
 - Adopt an overall organizational approach to GPS
- A GPS technology master plan will save money in the long run
 - Procurement Get the right equipment, and not too much
 - Management Less time battling the unknown
 - Training Uniformity of training and practices
 - Support Uniform systems, able to share in a pinch

- Make a management plan that fits
 - Uses and needs of GPS
 - Who collects what and how often
 - What should we be doing with GPS
 - Organizational structure
- Use the proper equipment
 - Recreational vs. mapping vs. survey grade devices

Acknowledgements

- Gretchen Hartley, Trimble Navigation Limited
- Jason Hooten, Topcon Positioning Systems, Inc.
- Rayward Chung, Trimble Navigation New Zealand Limited
- Michael W. Harvey, Leica Geosystems
- John Florio, Juniper Systems
- Eric Bock, Navigation Electronics, Inc.
- Darryl Zercher, Texas Department of Transportation
- Greg Smithart, Texas Commission on Environmental Quality

Acknowledgements

- Louisiana Department of Transportation and Development
 - Dr. Jim Mitchell
 - Kurt Johnson
- Louisiana Transportation Research Center
 - Dr. Zhongjie Zhang
- http://www.ltrc.lsu.edu/pdf/2012/fr_489.pdf

(LTRC Project No. 11-2P)

